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Abstract The classical theory for asymmetric lipid bilayer surfaces is revisited from the vantage point of
three-dimensional liquid crystal theory. Independent tangential motions of the leaflets comprising the bilayer
are accommodated in a framework that allows for distinct leaflet properties.
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1 Introduction

Our purpose in this brief exposition is to present a modern account of the classical theory of asymmetric
lipid bilayers in which asymmetry, i.e., the absence of reflection symmetry with respect to the bilayer surface
normal, is conferred by a property called the spontaneous curvature [1,2]. Following the seminal work of
Helfrich [1], we interpret bilayers as liquid crystal films, but here we derive the associated surface theory via
asymptotic expansion of three-dimensional liquid crystal theory,with film thickness—on the order ofmolecular
dimensions—playing the role of the small parameter. In accordance with the observed phenomenology, we
allow for the possibility that the two monolayer leaflets constituting the bilayer undergo relative motion in
the tangent plane to the surface to which they remain congruent. Though attention is confined here to the
purely mechanical theory, our formulation provides a framework in which a number of physical effects can be
modeled systematically.

Our motivation derives from renewed interest in asymmetric bilayers on the part of the biophysics com-
munity. For example, it has recently been demonstrated that inner (cytoplasmic) leaflets are significantly less
saturated than their outer (exoplasmic) counterparts [3]. Atomistic studies indicate that this asymmetry is cor-
related with higher packing of lipids and inhibited diffusivity in the exoplasmic leaflet [4]. Negatively charged
lipids are also present in higher concentrations in the inner leaflet. Asymmetry is thought to affect the inter-
actions between lipids and embedded transmembrane proteins, and is known to play a key role in regulating
cellular signaling, cell death and cell-to-cell interactions [5].

In Sect. 2, we present an asymptotic derivation of the two-dimensional energy of a thin film from three-
dimensional energies modeling the two leaflets of the bilayer as nematic liquid crystals having distinct proper-
ties. This ismade explicit, in Sect. 3, for polar nematics described by energies of the Frank type [6,7]. Following
a brief survey of the relevant differential geometry of surfaces in Sect. 4, in Sect. 5 we derive the differential
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Fig. 1 Bilayer patch in reference configuration

equations of mechanical equilibrium as consequences of a virtual power postulate. The same postulate delivers
formulae, derived in Sect. 6, for the edge interactions of a bilayer patch with its surroundings.

2 Leading-order asymptotic energy for small thickness

Consider a local patch of the bilayer in the shape of a prismatic cylinder generated by the parallel translation
of a plane region � forming the interface between the two leaflets of the bilayer. We adopt this patch as a local
reference configuration in preparation for a variational treatment based on the notion of patchwise virtual-
power introduced by Eugster and dell’Isola [8–10] and Eugster and Glocker [11]. The lipids of the bilayer are
presumed to be straight, parallel and of uniform length in this configuration. The upper and lower leaflets have
thicknesses α±h, where h is the thickness of the cylinder and

α+ + α− = 1. (1)

The energy of the cylinder is

E =
∫

�

U dA, (2)

where

U =
∫ α+h

0
U+ dς +

∫ 0

−α−h
U− dς, (3)

in which U± are the volumetric energy densities of the upper and lower leaflets and ς is a through-thickness
coordinate (Fig. 1).

We suppose the thickness h to be much smaller than the next smallest length scale, l say, in the system.
If the latter is used as the unit of length (l = 1), then the dimensionless thickness h � 1. Regarding U as a
function of h, we use Leibniz’ Rule together with a Taylor expansion to derive

U = hU + o(h), with U = α+U+ + α−U−, (4)

in which U±, respectively, are the values of U± at ς = 0, i.e., at the interface �. Accordingly,

E/h = E + o(h)/h, where E =
∫

�

U dA (5)

is the leading-order energy for small h.
Following [1], we model the leaflets of the bilayer as nematic liquid crystals with energy densities

U± = W±(ñ±, D̃±), (6)

where ñ± are fields of unit vectors specifying the local molecular orientation and D̃± = grad ñ± are their
(spatial) gradients. It is customary [7] to specify a constitutive function for the energy per unit current volume
and to regard the liquid crystal as an incompressible medium. Then, U± are also the energies per unit reference
volume, as assumed in the foregoing, and

U± = W±(n±,D±), (7)

where n± and D± are the restrictions to the interface of ñ± and D̃±, respectively.
Here, as in [1], we suppress lipid tilt and thus take n± to be the unit-normal fields to the images π± of

the interface � in the current configurations of the leaves of the bilayer. Because these are assumed to remain
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congruent, they are subsets of a single surface ω and accordingly share a common unit-normal field n. Thus,
n± = n and [12]

D± = ∇sn + η± ⊗ n, (8)

where ∇s(·) is the surficial gradient on ω and η±, respectively, are the restrictions to ω of the derivatives of ñ±
in the directions of ñ±. These represent the curvatures of the trajectories aligned locally with the directions
ñ± of the lipid molecules. Because the latter are fields of unit vectors, we require n · η± = 0 and conclude
that η± are tangential vector fields on ω.

The Gauss and Weingarten equations of differential geometry furnish

∇sn = −b, (9)

where b is the symmetric curvature 2-tensor on the local tangent planes of ω. The energy density of the bilayer
is thus given by the function

U (b,n, η±) = α+U+(b,n, η+) + α−U−(b,n, η−), (10)

where

U±(b,n, η±) = W±(n, −b + η± ⊗ n). (11)

3 Liquid crystal energies

3.1 The Frank energy for nematics

Wemodel both leaflets of the bilayer as nematic liquid crystals. Unlike themolecules of conventional nematics,
lipid molecules are polar. Accordingly, the orientation of the director field ñ is physically significant, i.e., the
energy is not invariant under ñ → −ñ. The most general quadratic energy that takes this into account is [7,
Eq. (3.36)]

W(ñ, D̃) = k1(trD̃)2 + k2(W(ñ) · D̃)2 + k3
∣∣D̃ñ∣∣2 + (k2 + k4)[tr(D̃2) − (trD̃)2]

+ a0 + (a1 + a2W(ñ) · D̃)trD̃ + a3W(ñ) · D̃. (12)

where k1−4 are constants satisfying Ericksen’s inequalities

2k1 ≥ k2 + k4, k2 ≥ |k4| and k3 ≥ 0, (13)

in accordance with the assumed convexity of W(ñ, ·), and W(ñ) is the skew tensor with axial vector ñ, i.e.,
W(ñ)v = ñ × v for all v.

Frank’s energy [7, Eq. (3.63)], obtained by suppressing a0,1,2,3, pertains to conventional nonpolar nematics.

3.2 Restriction to the interface

A central aspect of the present model is that� convects as a material surface with the two leaflets of the bilayer
in such a way as to maintain congruency; that is, the (possibly distinct) images π± of � under the individual
leaflet deformations are subsets of a single surface ω. This assumption is justified by the hydrophobicity of
the tail groups of the lipids, which acts to shield them from the surrounding aqueous solution and thereby
promotes congruency. Here, we assume that ω can be covered completely by the images of such patches, each
of which is assumed, for the sake of notational convenience, to be parametrized by a single coordinate chart.

The interfacial energy is the restriction to ω of (12). To derive it, we use (8) and (9) to obtain

W(n) · D = η · W(n)n − W(n) · b = 0, (14)

which follows from the symmetry of b, together with

trD = −2H, where H = 1
2 trb (15)
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is the mean curvature of ω. Combining

D2 = b2 − bη ⊗ n (16)

with the Cayley–Hamilton formula

b2 = 2Hb − K1, where K = det b (17)

is the Gaussian curvature of ω and 1 = I − n ⊗ n is the (two-dimensional) identity on its local tangent plane,
we arrive at

tr(D2) = tr(b2) = 4H2 − 2K . (18)

Using Dn = η, the restriction of the energy to the interface is found to be

U (n,b, η) = γ + βH + kH2 + k̄K + k3 |η|2 , (19)

where

γ = a0, β = −2a1, k = 4k1 and k̄ = −2(k2 + k4). (20)

With reference to (5), (7) and (10), the net leading-order composite energy is

E =
∫

�

W dA, (21)

where

W (H, K , η±) = α+W+(H, K , η+) + α−W−(H, K , η−), (22)

with W±(H, K , η±) = U±(n,b, η±), i.e.,

W±(H, K , η±) = γ ± + β±H + k±H2 + k̄±K + k±
3

∣∣η±∣∣2 . (23)

Accordingly,

W (H, K , η±) = γ + βH + kH2 + k̄K + α+k+
3

∣∣η+∣∣2 + α−k−
3

∣∣η−∣∣2 , (24)

where

γ = α+γ + + α−γ −, β = α+β+ + α−β−, k = α+k+ + α−k− and k̄ = α+k̄+ + α−k̄−. (25)

We adopt the conventional assumption that deformations of the bilayer conserve interfacial area. This is
assumed for each leaflet of the bilayer. It is justified by bulk incompressibility in the parent theory of liquid
crystals and by the suppression of lipid tilt [12]; inextensibility of the lipids then implies areal incompressibility.
The referential areal energy density W is then also the areal density in the current configuration of the system
in the sense that

E = α+E+ + α−E−, where E± =
∫

π±
W± da (26)

and π± ⊂ ω are the images of � under the deformations of the upper and lower leaflets of the bilayer,
respectively.
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4 Differential geometry

4.1 Elementary surface geometry

A typical configuration of the leaflet interface occupies a surface ω with position field r(θα) in which θα;α =
1, 2, are surface coordinates. This surface parametrization induces the tangent basis {aα}, where aα = r,α;
the (invertible) surface metric aαβ = aα · aβ; the dual metric aαβ, where (aαβ) = (aαβ)−1; and the dual
tangent basis {aα}, with aα = aαβaβ. The orientation of ω is identified with the unit-normal field n defined
by εαβn = aα × aβ, where εαβ = √

aeαβ , with a = det(aαβ), is the Levi–Civita alternating tensor and eαβ is
the permutation symbol (e12 = −e21 = 1, e11 = e22 = 0).

A primary role is played by the Gauss and Weingarten equations [13,14]

r;αβ = bαβn and n,α = −bαβaβ, (27)

respectively, where

r;αβ = r,αβ − �λ
αβr,λ (28)

is the second covariant derivative of the surface position field. Here, �λ
αβ are the Levi–Civita connection

coefficients and bαβ are the coefficients of the second fundamental form on ω; these are symmetric with
respect to interchange of the subscripts, and the latter induce the curvature tensor

b = bαβaα ⊗ aβ. (29)

The surficial gradient of the field n is ∇sn = n,α ⊗ aα, in accordance with (9) and (27)2. Here, the connection
coefficients are simply the Christoffel symbols and the connection is therefore metric compatible, i.e., the
covariant derivatives of the metric components vanish.

The mean and Gaussian curvatures of ω are [see (15)2 and (17)2]

H = 1

2
aαβbαβ, K = 1

2
εαβελμbαλbβμ, (30)

respectively, where εαβ = eαβ/
√
a, with eαβ = eαβ, is the contravariant alternator, and we note the relation

bβ
μb̃

μα = Kaβα, (31)

where bβ
μ = aβαbαμ and

b̃αβ = εαλεβμbλμ (32)

is the cofactor of the curvature, expressible as

b̃αβ = 2Haαβ − bαβ (33)

via the identity

εαλεβμ = aαβaλμ − aαμaβλ. (34)

TheMainardi–Codazzi equations of surface theory are bλμ;β = bλβ;μ [14], or, more concisely, εβμbλμ;β =
0.Themetric compatibility of the connection implies that the εαλ are covariant constants; theMainardi–Codazzi
equations are thus equivalent to

b̃αβ

;β = 0. (35)
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4.2 Virtual velocity

The virtual velocity of a leaflet of the bilayer is of the form [12]

ṙ = u = uαaα + wn, (36)

where uα and w, respectively, are the tangential and normal virtual velocities. Here, we take the coordinates
θα to be convected with the lipids. The superposed dot stands for ∂

∂ε
r(θα; ε), evaluated at ε = 0, say, which

we identify with an equilibrium state. The induced variation of the surface metric is

ȧλμ = u,λ · aμ + aλ · u,μ, (37)

in which

u,λ = (uα;λ − wbαλ)aα + (uαbαλ + w,λ)n, (38)

by the Gauss and Weingarten equations, where aα = aαβaβ and uα;λ is the covariant derivative defined by

uα;λ = uα,λ − uβ�
β
αλ. (39)

Thus,

ȧλμ = uμ;λ + uλ;μ − 2wbλμ. (40)

If Aαβ is the (fixed) metric on a reference surface �, then the areal stretch induced by the deformation is
J = √

a/A, where A = det(Aαβ). The fact that the cofactor of aαβ is (a)aαβ then yields

J̇/J = 1

2
aαβ ȧαβ, (41)

and with (37) this may be reduced to

J̇/J = aα · u,α. (42)

The virtual velocities of the two leaflets of the bilayer at the point with coordinates θα on ω are given
simply by

ṙ± = u± = uα±aα + wn, (43)

where uα± are the distinct tangential velocities of the leaflets and w, the normal velocity, is common to both
leaflets. This ensures that congruency of the leaflets is maintained as the bilayer deforms.

5 Energy, virtual power and equilibrium

To obtain the equilibrium equations, we invoke the virtual-power principle for the simply connected patch �.
Areal incompressibility, i.e., J± = 1, is accommodated by extending the energy to unconstrained states and
introducing appropriate Lagrange-multiplier fields [15]. The extension of the energy (26) of the patch is

E = α+E+ + α−E−, where E± =
∫

�

[J±W± + λ±(J± − 1)] dA +
∫

∂�

μ̃±(J± − 1) dS, (44)

and λ± and μ̃± are Lagrange multiplier fields. Multipliers on the boundary are included because the tangential
and normal derivatives of the virtual bilayer velocities u±, which figure in the expression for the variation of
the energy to be derived, are constrained by areal incompressibility.

Equilibria are defined to be those states that satisfy the virtual-power statement

Ė = P, (45)

where

P = α+P+ + α−P− (46)
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is the virtual power imparted to the patch, in which P± pertain to the individual leaflets, and

Ė = α+ Ė+ + α− Ė−, with Ė± =
∫

π±
[Ẇ± + (W± + λ±) J̇±/J±] da +

∫
∂π±

μ± J̇±/J± ds, (47)

where μ± ds = μ̃± J± dS.
We note that variation of (44) with respect to the multipliers simply returns the constraints and is therefore

not made explicit.

5.1 Variation with respect to η±

Setting uα± = 0 and w = 0, we obtain the energy variation

Ė/2 = α+
∫

π+
k+
3 η+ · η̇+da + α−

∫
π−

k−
3 η− · η̇−da, (48)

and conclude, as η̇± are arbitrary tangential vector fields, that η+ and η− vanish if the virtual powers P±
attending η̇± also vanish. Here we assume that k±

3 > 0 in accordance with the strict form of (13)3. We thus
base our further considerations on the leaflet energies

W±(H, K ) = γ ± + β±H + k±H2 + k̄±K , (49)

and bilayer energy

W (H, K ) = γ + βH + kH2 + k̄K . (50)

The identifications γ = kC2 and β = −2kC, where C is a constant, reduce the latter to the classical Helfrich
form [1,2]

W (H, K ) = k(H − C)2 + k̄K (51)

in which C is the so-called spontaneous curvature.
Minimum-energy considerations in the setting of conservative problems require that k, and hence γ , be

nonnegative [16].

5.2 Variational derivatives of the leaflet energies

In this subsection, we derive formulae valid for arbitrary virtual velocities of a leaflet. We focus attention on
a single leaflet and temporarily suppress the superscript ±.

Because J and W depend on the surface position field through its first and second derivatives with respect
to the coordinates, there exist vector fields Nα andMαβ such that

Ẇ + (W + λ) J̇/J = Nα · u,α + Mαβ · u;αβ, (52)

where u = ṙ is the virtual velocity and u;αβ = u,αβ − �λ
αβu,λ is the second covariant derivative of u. This is

symmetric in the subscripts, and thus, no generality is lost by imposingMαβ = Mβα .
For example [17],

Ḣ = 1
2a

αβn · u;αβ − bαβaβ · u,α and K̇ = b̃αβn · u;αβ − 2Kaα · u,α, (53)

whereas [see (42)]

J̇/J = aα · u,α. (54)

For either leaflet energy, it follows from (49) that

Ẇ = (β + 2kH)Ḣ + k̄ K̇ , (55)
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with the moduli, of course, pertaining to the considered leaflet, and hence that

Nμ = Nμβaβ, Mμβ = Mμβn, (56)

with

Nμβ = (λ + βH + kH2 − k̄K )aμβ − (β + 2kH)bμβ and Mμβ = 1
2 (β + 2kH)aμβ + k̄b̃μβ, (57)

in which the constant γ in W has been absorbed into the multiplier λ [cf. (49)].
We write the right-hand side of (52) as

Nα · u,α + Mαβ · u;αβ = ϕα
;α − u · Tα

;α, (58)

where

Tα = Nα − Mαβ

;β , (59)

with

Mβα

;β = Mβα

;β n − Mβαbμ
β aμ, (60)

and

ϕα = Tα · u + Mαβ · u,β , (61)

in which [cf. (27)2 and (56)]

Tα = (Nαμ + Mαβbμ
β )aμ − Mαβ

;β n. (62)

Combining (52) and (58) with Stokes’ theorem, we derive
∫

π

[Ẇ + (W + λ) J̇/J ] da =
∫

∂π

ϕανα ds −
∫

π

u · Tα
;α da, (63)

where ν = ναaα is the exterior unit normal to ∂π and

u · Tα
;α = uμaμ · Tα

;α + wn · Tα
;α, (64)

with

aμ · Tα
;α = (Nαμ + Mαβbμ

β );α + Mαβ

;β bμ
α (65)

and

n · Tα
;α = (Nαμ + Mαβbμ

β )bμα − Mβα

;βα
. (66)

To reduce the first term on the right-hand side of (63), we use the normal-tangential decomposition [13]

u,β = τβu′ + νβuν, (67)

where τ = r′ = ταaα = n × ν is the unit tangent to ∂π, u′ = ταu,α = du/ds, with τα = dθα/ds, is the
tangential derivative of u, and uν = ναu,α is the normal derivative. The term involving the tangential derivative
is integrated by parts. If ∂π is piecewise smooth in the sense that its tangent τ is piecewise continuous, having
discontinuities at a finite number of corners, then

∫
∂π

ϕανα ds =
∫

∂π

({Tανα − (Mαβνατβ)′} · u + Mαβνανβ · uν) ds −
∑

Mαβ [νατβ ]i · ui , (68)

in which the square bracket refers to the forward jump as a corner of the boundary is traversed, and the sum
ranges over all corners, i.e., [·] = (·)+ − (·)−, where, in the present context, the subscripts ± identify limits as
a corner located at arclength station s is approached through larger and smaller values of arclength.
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5.3 Tangential leaflet equilibrium

Consider variations with u and uν vanishing on ∂π (and at corners) with u = uμaμ in the interior of π(= π+
or π−). For these, we have the variation

Ė =
∫

π

[Ẇ + (W + λ) J̇/J ] da = −
∫

π

uμaμ · Tα
;α da (69)

of the energy of a leaflet, in which variation of λ has been suppressed. Canceling the common factor α+ or
α−, as appropriate, it follows, from (45)–(47), that the corresponding leaflet power is of the form

P =
∫

π

gμuμda, (70)

where gμ is a tangential force per unit area acting on the leaflet. With uμ unrestricted, we thus arrive at

(Nαμ + Mαβbμ
β );α + Mαβ

;β bμ
α + gμ = 0 in π. (71)

To reduce this for the leaflet energy (49), we use (33) and (57), obtaining

Nαμ + Mαβbμ
β = (λ − kH2)aαμ + ( 1

2β + kH
)
b̃αμ, (72)

with divergence [cf. (35)]

(Nαμ + Mαβbμ
β );α = aαμλ,α − 2kHaαμH,α + kb̃αμH,α, (73)

and combination with [see (57)2]

Mαβ

;β = kaαβH,β (74)

furnishes

(Nαμ + Mαβbμ
β );α + Mαβ

;β bμ
α = aαμλ,α. (75)

Then, reinstating the leaflet labels, we find that (71) reduces simply to

aαμλ±
,α + gμ

± = 0 in π±. (76)

The multipliers λ± are therefore uniform if the tangential forces vanish, as assumed in conventional
expositions of theory [2]. However, a number of biologically relevant physical effects, such as intra-leaflet
diffusion [12,18] and viscous flow [12,19], can give rise to non-uniform multiplier fields.

5.4 Normal equilibrium of the bilayer

We consider normal variations involving both leaflets of the bilayer together. Taking variations as in the previous
subsection, now with u± = wn in the interior of an overlap region π∗ = π+ ∩ π−, we obtain the energy
variation

Ė = −
∫

π∗
wn · Tα

;αda, (77)

where [cf. (62)]

Tα = (Nαμ + Mαβbμ
β )aμ − Mαβ

;β n, (78)

with

Nαμ = α+Nαμ
+ + α−Nαμ

− and Mαμ = α+Mαμ
+ + α−Mαμ

− (79)
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in which Nαμ
± and Mαμ

± are given by (57) with moduli and Lagrange multipliers pertaining to π±, respectively.
Thus, the associated power is

P =
∫

π∗
pw da, (80)

where p is the net lateral pressure acting on the surface in the direction of n. With (45) and withw unrestricted,
we arrive at

(Nαμ + Mαβbμ
β )bμα − Mβα

;βα
+ p = 0 in π∗. (81)

Wenote in passing that (71) and (81) are the general equilibriumequations for a pressurizedKirchhoff–Love
shell [13,14].

To reduce (81) for the energy (50), we use (57) with aμαbμα = 2H and b̃μαbμα = 2K , which follow from
(30)1 and (31), respectively, finding that

(Nαμ + Mαβbμ
β )bμα = 2λH + 2kH(K − H2) + βK . (82)

Then, with (74), Eq. (81) reduces to the well-known shape equation

k[�H + 2H(H2 − K )] − βK − 2λH = p, (83)

where

�H = aαβH;αβ = 1√
a
(
√
aaαβH,β),α (84)

is the surficial Laplacian of H . Here, in contrast to the classical theory [2], λ (= α+λ++α−λ−) is non-uniform
if either leaflet is subjected to a tangential distributed force.

6 Edge conditions

Edge conditions are of secondary interest in this subject because applications are primarily concerned with
closed surfaces. However, in the present framework they are readily obtained from the patchwise virtual power
postulate and so we derive them here for the sake of completeness. A number of works that encompass edge
interactions are available in the literature [17,20,21].

With the equilibrium equations (76) and (83) satisfied, the variation of the energy—of a leaflet or the
bilayer—reduces to

Ė =
∫

∂π

(ϕανα + μ J̇/J ) ds. (85)

We use this to extract the relevant expressions for the actions exerted at the boundaries of a patch.

6.1 Tangential actions on the boundaries of leaflet patches

From our development thus far, we see that (85) holds for the individual leaflets, with superscripts ± appended
as appropriate. We continue the convention of suppressing these when discussing a single leaflet. Applying
this with tangential leaflet virtual velocities u = uβaβ, we conclude, from (45) and (68), after division by α,
that the relevant contribution to the leaflet power is

P =
∫

∂π

{tβuβ + μβ(ναuβ

;α)}ds −
∑

( fi )β(ui )
β, (86)

where

tβ = Mbβανα + aβ · {Tανα − (Tn + μτ )′}, μβ = μνβ and ( fi )β = [μτβ ]i (87)
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are the tangential force density, double force density [22] and corner force, respectively, with

M = Mαβνανβ and T = Mαβνατβ. (88)

Using n′ = −bαμταaμ and

τ ′ = −κgν + κτn, (89)

where

κτ = bαβτατβ and κg = −νλ(dτλ/ds + τατβ�λ
αβ) (90)

are the normal and geodesic curvatures of ∂π, respectively, the leaflet traction, double forces and corner forces
are given finally by

t±β = M±bβανα + T±bαβτα + μ±κgνβ − (μ±)′τβ + aβ · Tα±να, μ±
β = μ±νβ and ( f ±

i )β = [μ±τβ ]i .
(91)

6.2 Normal actions on the boundary of a bilayer patch

Assuming the equilibrium equations to be satisfied in the interior of π∗ = π+ ∩ π−, the residual variation of
the total energy of the bilayer patch π∗ is [cf. (85)]

Ė =
∫

∂π∗
(ϕανα + μ J̇/J ) ds, (92)

which we apply with u± = wn. Thus, the boundary integral of ϕανα is given by (68), with

uν = να(wn),α = wνn − wbβ
αναaβ. (93)

From (45), we derive the associated virtual power

P =
∫

∂π∗
(Sw + Cwν) ds −

∑
fiwi , (94)

where

S = n · Tανα − T ′ − μκτ , C = M and fi = [T ]i (95)

are the transverse shear force density, bending moment density and transverse corner force, respectively.
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