
Article

Mathematics and Mechanics of Solids

2020, Vol. 25(2) 234–262

� The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/1081286519872236

journals.sagepub.com/home/mms

Stability of lipid membranes with
orthotropic symmetry

Nikhil Walani
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Abstract
Lipid membranes routinely undergo protein-mediated morphological remodeling during vital processes such as cellular
transport and division. These membrane remodeling proteins can be broadly classified into two categories: one that gen-
erates a spherical shape and another that generates a cylindrical shape. To gain physical insights into membrane shape
transitions, it is important to investigate the stability of membranes in the presence of these two types of proteins.
However, the existing membrane theory is mostly restricted to the class of membranes that interact with the sphere
shape-generating proteins and possess isotropic symmetry. In this work, we use curvature elasticity of the lipid mem-
branes to derive the stability criterion for membranes that interact with the cylindrical-shape-generating proteins that
possess orthotropic symmetry. We derive the convexity condition followed by the stability criterion for a generalized
form of strain energy that can entertain material heterogeneity. The proposed framework would allow for a rigorous
analysis of a broader set of membrane–protein interactions during key cellular processes.
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1. Introduction

Various proteins regulate membrane remodeling events during key cellular processes such as transport
of macromolecules and division of organelles. One of the primary mechanisms by which proteins
deform membranes is via curvature generation. There are two main types of curvature-generating pro-
teins: one that generates isotropic spherical curvature such as clathrin and another that generates ortho-
tropic cylindrical curvatures such as BIN-amphiphysin-Rvs (BAR) proteins. In this article, we focus
our attention on BAR and similarly shaped proteins [1-3] that have been shown to play a vital role in
vesicle formation and scission during clathrin-mediated endocytosis (CME). These proteins are rod-
shaped, peripheral proteins with or without small wedge-like insertions into the underlying lipid mem-
brane. In a previous study, BAR proteins were shown to drive vesicle formation in conjunction with
actin filaments via instability in a high membrane tension environment [4]. In a recent study, conical
lipids and cylindrical-shaped proteins have been shown to trigger instabilities during mitochondrial
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fission [5]. In order to gain mechanistic insights into such pronounced shape transitions, it is important
to study the stability of membranes coated with BAR-like proteins.

The energetics of membranes coated with isotropic proteins is well captured by a Helfrich–Canham
model which depends on the two curvature invariants: the mean curvature and the Gaussian curvature
[6]. However, owing to the interactions with directional proteins such as BAR-like proteins, isotropic
symmetry is lost and the strain energy depends on an additional invariant, called the curvature deviator.
This form of energy has been used in the context of rigid anisotropic inclusions and penalizes the devia-
tion of the normal curvature of the surface from the curvature in the direction of the protein [7-9]. In
[10], we formalized the mechanical model to account for interaction of BAR-like proteins with the lipid
membrane. In addition, numerical studies have also been performed using similar energetics to investi-
gate the response of BAR-coated membranes [11-15]. Mathematical models describing membrane–
protein interactions for both isotropic and anisotropic cases have been reviewed in [16].

The stability of isotropic membranes has been a part of many fundamental studies. The second varia-
tion of Helfrich–Canham energy has been derived in [17-21]. The stability of isotropic membranes with
multiple phases was derived in [22] and for membranes with heterogeneities and higher-order curvature
dependence was derived in [23]. However, a mathematical framework to investigate the stability of
orthotropic membranes is still lacking. In this article, we build upon these fundamental works to derive
the stability criterion for orthotropic membranes. We allow the strain energy to have arbitrary func-
tional dependence on the mean curvature, the Gaussian curvature and the curvature deviator fields and
derive the necessary criterion for the existence of stable configurations. Next, we perform the linearized
stability of the membrane about a given shape, distribution, and alignment of proteins and compute the
second variation of the energy functional. The outline of the article is as follows: in Section 2 we briefly
revisit the derivation of the first variation for orthotropic membranes; in Section 3 we discuss the con-
vexity criterion of the energy density; in Section 4 we derive the second variation of the energy func-
tional; and in Section 5 we discuss the key findings and draw conclusions.

A summary of the notation used in the text is given in Table 1. Let r(ua) be the position of a material
point on the 2D surface embedded in 3D space, where ua = (u1, u2) are the coordinates that parametrize
the surface. We follow the Einstein’s summation convention and use the Greek indices to define the
range over the set f1, 2g. The tangent vectors at any point on the surface are given by r,a = ∂r

∂ua = aa.
This yields a metric tensor on the surface whose components are obtained as aab = aa � ab. The covar-
iant derivative of the tangent vectors yield the components of the second fundamental form such that
aa;b = babn, where n is the unit normal to the surface.

Table 1. Notation used in the text.

Symbol Description

ua Parameters describing the surface
r(ua) Position of any material point on the surface
aa Tangent vectors on the surface based on the parameterization ua

aab Covariant components of the metric tensor defined on the surface
bab Covariant components of the curvature tensor defined on the surface
E Total energy of the membrane along with bulk fluid
W Strain energy per unit area of the membrane in the current configuration
O Reference configuration
v Current configuration
H Mean curvature field on the surface
K Gaussian curvature field on the surface
D Deviatoric curvature field on the surface
l Direction of alignment of protein on the surface
m Direction perpendicular to l on the surface
s Lagrange multiplier to preserve local area
J Determinant of the Jacobian matrix
p Transmembrane pressure across the membrane
V Volume enclosed by the fluidic shell
Ds Surface Laplacian
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Steigmann [24] defined in-plane fluidity of surfaces through material symmetry and showed that the
strain energy density could only depend on the mean curvature H , the Gaussian curvature K, and the
areal stretch ratio J . These fields can be written in terms of the components of first and second funda-
mental forms as

2H = babaab,

2K = eagebubabbgu,

2J 2 = 2a=A = eagebuaabagu=A,

ð1Þ

where eab = eab=
ffiffiffi
a
p

with eab being the permutation tensor, a is the determinant of the metric tensor in
the current configuration, and A is the determinant of the metric tensor in the reference configuration.

In the present context, the attached BAR-like proteins are assumed to have a directionality, which at
each material point is assumed to be represented by a unit tangential vector field l(ua). The direction
orthogonal to l and in the plane of the surface is defined such that

m = n×l: ð2Þ

Thus, fl,mg form an orthonormal basis on the tangent plane of the surface. These vectors can be
used to capture the in-plane orthotropic symmetry of the surface in the current configuration by allow-
ing the strain energy density to depend on a structural tensor S= l� l� m� m (see [10]). Enforcing
the Galilean invariance on the energy density then yields the additional dependence on a new invariant
D, called the curvature deviator, such that

2D = bab(lalb � mamb), ð3Þ

where

la = l � aa, ma = m � aa: ð4Þ

In the presence of constraints on the local area and the enclosed volume (V), the energy functional for
a closed surface (v) is expressed as

E =

Z
v

W (H ,D,K; ua)da +

Z
v

s(ua)da� pV (v), ð5Þ

where s(ua) is the local Lagrange multiplier associated with the local area constraint commonly known
as the surface tension and p is the Lagrange multiplier associated with the volume constraint referred to
as the transmembrane pressure.

To evaluate the Euler–Lagrange equations associated with the equilibrium of a patch of membrane
p � v, we consider the variation of the position vector given by

_r=
∂r(ua; e)

∂e
je = 0 = u= uaaa + un= u+ un: ð6Þ

Here and henceforth, the superposed dot _() signifies the derivative with respect to a parameter e (evalu-
ated at e = 0) that generates a family of surfaces r(ua; e). In (6), u= uaaa is the tangential variation and
un is the normal variation. As derived in [25], this yields the following variations of the first and second
fundamental form

_aab = ua;b + ub;a � 2ubab,

_bab = ul
;ablb + ul

;bbla + ulbla;b + u;ab � ubalbl
b,

ð7Þ

where a subscripted semi-colon ();a denotes the covariant derivative with respect to the metric aab. Using
these relations, the variations of the mean curvature, the Gaussian curvature, and the Jacobian can be
evaluated as [25]
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_H = uaH,a +
1

2
(Dsu) + u(2H2 � K),

_K = uaK,a + 2uHK + u;ab
~b

ab
, and

_J

J
= ua

;a � 2uH :

ð8Þ

Here, Ds represents the surface Laplacian, which for a scalar field f is given by Dsf = f;abaab.
Next, we derive the variation of the alignment vector of the protein l and the curvature deviator (D).

We note that the orientation of the protein in the tangent plane is assumed to be not convected to the
surface. This is because the lipids underneath the orthotropic proteins are fluidic in nature. Thus, as the
surface is given a virtual displacement, there is no variation in l along the surface and, hence,

_l � aa = 0: ð9Þ

However, any virtual displacement should enforce that the surface protein is aligned perpendicular to
the surface normal such that,

l � n= 0: ð10Þ

Thus, the variation of l, if any, occurs when the surface variation leads to a variation in the normal and
has to satisfy the relation

_l =� (l � _n)n: ð11Þ

Hence, the variation of l only occurs in the direction normal to the surface at the material point in con-
sideration. Similarly, we can obtain the variation of m as

_m =� (m � _n)n: ð12Þ

We note that this aspect of variation was not presented by us previously [10], where it was assumed that
_l = 0. Despite this difference, variations of the covariant or contravariant components of the protein
alignment vector and the curvature deviator are not affected and can still be written as

_l
a
= l � _aa = lg(� ua

;g + uba
g),

_ma = m � _aa = mg(� ua
;g + uba

g),

2 _D = uhbab;h(lalb � mamb) + (u;ab + ubagb
g
b)(lalb � mamb):

ð13Þ

As vector fields l and m are linearly independent and span the tangent plane at each material point, we
can transform the basis and the components of the metric and its dual such that

aa = lal + mam, aab = lalb + mamb, and aab = lalb + mamb: ð14Þ

In addition, because l and m are orthonormal, we note the useful identities,

l � m = lama = lbmb = 0,

l � l = lalbaab = m � m = mambaab = 1:
ð15Þ

Using the Cayley–Hamilton theorem in the form

bab = 2Haab � ~bab, ð16Þ

where ~bab is the contravariant adjugate of the curvature tensor such that

~babbbh = da
hK, ð17Þ
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we can write

bagb
g
b = 2Hbab � Kaab: ð18Þ

Using the above results from (14)–(18) and the fact that the metric is covariant constant (aab;g = 0), the
variation of D in (13) can be reduced to

_D = uhD,h � uhbab(lalb);h + (u;ab)(lalb)� 1

2
Dsu + 2uHD: ð19Þ

In the above equation, the first two terms are due to the tangential variations and the remaining three
terms are due to the normal variations of the surface. We would like to note that the tangential varia-
tion of D is not just uhD,h as is the case with the scalar fields obtained only from the map r(ua), such as
those of H and K in (8), but also depends on the given orientation of the protein l.

With the help of the variations obtained in (8), (19), and the procedure outlined in [10], the first varia-
tion of E can be expressed as

_E =

Z
p

f�ua(s,a +
∂W

∂ua + Na) + uGgda + _EB ð20Þ

where

Na = WDbbh(lblh);a,

G = (WDlalb);ba �
1

2
Ds(WD) + 2HDWD +

1

2
DsWH + (WK);ba

~b
ba

+ WH (2H2 � K) + 2H(KWK �W )� 2Hs � p, and

_EB =

Z
∂p

½(W + s)uana +
1

2
(WH �WD)nau,a �

1

2
(WH �WD),anau

+ (WK
~b

ab
+ WDlalb)nbu,a � ½(WK),a

~b
ab

+ (WDlalb);a�nbugds:

ð21Þ

The first variation in (20) furnishes the equilibrium equations in the tangent plane that describe the
gradient in the surface tension field if the material is heterogeneous or has directional proteins,

s,a =� ∂W

∂ua � Na: ð22Þ

Here ∂W
∂ua represents the explicit derivative of strain energy density with respect to the parameterizing

variables. For equilibrium in the direction normal to the surface, we require that

G = 0, ð23Þ

and can be termed as the modified shape equation in the presence of orthotropic proteins [10].
In (21)3, _EB corresponds to the boundary terms of the variation of the energy functional for the mem-

brane patch p, s represents the arc length that parameterizes the edge ∂p and na, and na are the covar-
iant and the contravariant components of the in-plane normal (n) to the edge, respectively. Similarly, ta

and ta are the covariant and the contravariant components of the unit tangent to the boundary (t),
respectively. The components of the symmetric curvature tensor can be expressed as

kn = babnanb, kt = babtatband

t = babtanb:
ð24Þ

Using the relation presented in [26], we decompose the derivatives of normal perturbation with respect
to the parameterization ua such that

u,a = tau0+ nau, n: ð25Þ
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The boundary terms can then be recast to obtain the edge forces and moment such that

_EB =

Z
∂p

(Fnn + Ftt + Fnn) � uds�
Z
∂p

Mt �vds, ð26Þ

where,

M =
1

2
WH + ktWK +

1

2
(WD2(l � n)2 � 1),

Fn = W + s � knM ,

Ft =� tM ,

Fn = (tWK)0 � 1

2
(WH ), n � (WK),b~b

ab
na

+
1

2
(WD), n � (WDlalb);bna � (WDlalbnbta)0:

ð27Þ

Here, M is the bending moment per unit length, Fn is the in-plane normal force per unit length, Ft is
the in-plane shear force per unit length, and Fn is the transverse shear force per unit length. Primes ()0

represent the partial derivative of the concerned entity () with respect to arc length s. The details of the
above derivation have been presented in [10] for orthotropic lipid membranes and in [26] for isotropic
ones.

1.1. Orientation of proteins

Until now, no assumptions have been made about the orientation of the proteins l. If we assume that
the protein orientation is regulated by the membrane curvature, we can obtain l by minimizing the
energy functional in (5) with respect to l

dE =

Z
O

WD(
∂D

∂l
� dl)ds = 0: ð28Þ

Here, dE is the variation in the energy corresponding to a variation in the orientation of the proteins
dl. From the definition of the curvature deviator (3) and the symmetry of the curvature tensor b, we
obtain

∂D

∂l
= 2bl: ð29Þ

We note that the variation in the orientation of the proteins (dl) is not arbitrary and has to satisfy the
condition

l � dl = 0: ð30Þ

Thus, for stationarity of the energy functional with respect to the orientation of the proteins in (28), we
require that

2WD(bl � dl) = 0 ð31Þ

holds true locally in O. This would mean that either

WD = 0, ð32Þ

indicating that the proteins are aligned in the direction of their preferred curvature on the surface, or
they are aligned along a principal direction g (say) of the curvature tensor of the surface such that

bl � dl = kgl � dl = 0: ð33Þ
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2. Convexity criterion

Now we derive the necessary condition for stability to restrict the allowable functional forms of strain
energy density in the same spirit as that derived in [27] for bendable surfaces. These surfaces are piece-
wise smooth such that the Euler–Lagrange equations (22) and (23) are satisfied at all points except at
the curves that sustain the jumps in the curvature. Such curves have been termed as phase boundaries
for 2D systems [28]. It was shown in [27] that the jump in the curvature has to be of the form

½r,ab�= unanb: ð34Þ

Here, u is any arbitrary vector in 3D space and na are the covariant components of the in-plane unit nor-
mal n to the curve. The square brackets indicate a jump in the quantity across the phase boundary. For
a phase boundary to be a solution of an energy minimizing configuration, it is required that the force
and moment across it should be continuous, i.e.,

½f�= ½Fnn + Ftt + Fnn�= 0, and

½M �= 0:
ð35Þ

Following [28], we derive the conditions for the strong relative minimizers where the perturbations in
r and r,a are bounded and for the weak minimizers for which, in addition, perturbations in r,ab are
bounded. To this end, we derive the Weierstrass–Erdmann condition for the jump condition of strain
energy density using the Weierstrass–Graves convexity criterion [29], which requires that for a scalar
potential U ,

U(r,a; l; r,ab + cdadb)� U(r,a; l; r,ab) ø c � ∂U

∂r,ab

dadb ð36Þ

for every material point in consideration except at the phase boundary. The above equation has to hold
for any arbitrary vector c and da. Arguments conjecturing the usage of the above equation for inextensi-
ble surfaces has been presented in [28]. For U = W (H ,D,K), we evaluate the right-hand side of the above
equation by fixing l, r,a and computing the variation

_U = _W = WH
_H + WD

_D + WK
_K, ð37Þ

where

_H =
1

2
aab(n � _r,ab),

_D =
1

2
(lalb � mamb)(n � _r,ab), and

_K = ~b
ab

(n � _r,ab):

ð38Þ

Using the relation

_U =
∂U

∂r,ab

� _r,ab, ð39Þ

and (37) and (38), we obtain that

∂U

∂r,ab

=
1

2
WH aab +

1

2
WD(lalb � mamb

� �
+ WK

~bab)n: ð40Þ

Subsequently, on using the relation lalb + mamb = aab, we obtain

c � ∂U

∂r,ab

dadb =
1

2
WH +

1

2
WD(2h� 1) + zWK

� �
(c � n): ð41Þ
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In the above equation, we have

h = lalbdadb = (l � d)2

z = ~b
ab

dadb:
ð42Þ

To derive (41), we used the normalization condition such that aabdadb = 1. This would mean that the
vector d= daa

a, tangential at the material point in consideration, is of unit magnitude.
We use (34) and (36) and approach the boundary in consideration from either side (+ or �) with

c= u, da = na for r,ab = r�,ab and c=� u, da = na for r,ab = r+,ab. This yields

½W �= M6u � n: ð43Þ

Here, M with superscripted + or � represents the limiting bending moment on either side of the bound-
ary. We then use (24) to derive the jump in normal curvature of the interface

½kt�= (u � n)(n � t)2 = 0 ð44Þ

and the jump in normal curvature perpendicular to the interface

½kn�= (u � n): ð45Þ

Hence, the jumps in curvature fields are given by

½H �= 1

2
u � n,

½D�= 1

2
(u � n)(2h� 1), and

½K�= kt(u � n):

ð46Þ

Using the above relations, we can write

½W �= W 6
H ½H �+ W 6

D ½D�+ W 6
K ½K�= ½kn�M6, ð47Þ

where the same superscripts (either + or �) have to be used for all the terms on the right-hand side.
This jump condition in strain energy density furnishes the Weierstrass–Erdmann condition for fluid
membranes with orthotropic symmetry.

The Weierstrass–Graves inequality as derived in [28] can be extended to the present case of orthotro-
pic shells by fixing the tangent vectors r,a and l, and perturbing r,ab ! r,ab + cdadb to obtain
DH = 1

2
n � c, DD = DH(2h� 1), and DK = 2zDH . This reduces (36), with the help of (41), to

W (H + DH ,D + DD,K + DK)�W (H ,D,K) ø WH DH + WDDD + WKDK: ð48Þ

The above equation can be linearized with respect to f = n � c by fixing H , D, K, h, z, and setting
P1(f) = W (H + f=2,D + f=2(2h� 1),K + zf). This yields that the convexity criterion in the above
equation is equivalent to the convexity of P1(f) at f = 0, which, in turn, implies that P1

00(0) ø 0. Thus,
we obtain the Legendre–Hadamard condition for convexity

1

4
WHH +

1

4
(2h� 1)2WDD + z2WKK +

1

2
(2h� 1)WHD + zWHK + z(2h� 1)WDK ø 0, ð49Þ

where z in the above equation is bounded by extremal of the eigenvalues of the cofactor of the curvature
tensor and h is bounded such that 0 ł h ł 1.

To maintain continuity of traction across the phase boundary, we use (35) and (27) and require that

½Fn�= ½W + s� � ½knM �= 0: ð50Þ
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Equations (47) and (50) then imply that the jump in the Lagrange multiplier across the phase boundary
vanishes, i.e., ½s�= 0. As ½t�= 0, from (27) we establish that the tractions along t are continuous. For the
tractions along n to be continuous, we require

½(tWK)0 � 1

2
(WH ), n � (WK),b~b

ab
na +

1

2
(WD), n

� (WDlalb);bna � (WDlalbnbta)0�= 0:
ð51Þ

We note here that (35) required for the continuity in traction and moment across the phase boundary
is necessary for both the weak and the strong relative minimizers. Equations (47) and (48) are necessary
for the strong relative minimizers whereas (49) replaces (48) as the necessary condition for the weak
minimizers.

2.1. Quadratic energy density

For a quadratic energy density of the form as considered in [10],

W = k1(H � H0)2 + k2(D� D0)2 + 2k12(H � H0)(D� D0) + �kK, ð52Þ

we observe that the Legendre–Hadamard condition for stability requires

(2h� 1)2k2 + 2(2h� 1)k12 + k1 ø 0 8 h 2 ½0, 1�: ð53Þ

If we assume that the protein orientation can be solved for by minimizing the energy functional with
respect to the perturbations in l, then we require the Weierstrass–Graves inequality to hold for the per-
turbations in l as well. For this, we fix r,a, r,ab and vary l! l + q where q= qaaa is such that new
orientation of the proteins differ from the original by a rotation and, hence, satisfies the criterion
q � q=� 2l � q. This yields

DD = (b+ bT )l � q= 2(bl) � q: ð54Þ

For such perturbations in the orientation of the proteins, we can write the Weierstrass–Graves inequality
as

W (H ,D + DD,K)�W (H ,D,K) ø WDDD: ð55Þ

The Legendre–Hadamard condition associated with the above equation after linearization with respect
to DD = j and setting P2(j) = W (H ,D + j,K) yields P002(0) ø 0. Thus, along with (49), we require that
WDD ø 0. Moreover, because (49) is quadratic in (h� 1)=2, a stricter criterion for convexity requires that
its discriminant is non-positive such that

(WHD + 2zWDK)2 �WDD(WHH + 4z2WKK + 4zWHK) ł 0: ð56Þ

The above equation does not depend on the orientation of the proteins for the quadratic form of the
strain energy considered in (52) and can be written as

k2
12 � k1k2 ł 0 ð57Þ

subject to k2 ø 0.

3. The second variation

Now, to obtain the linearized stability about a given configuration, we write the second variation of the
energy functional considered in (5). To obtain this, we make the assumption that the surface O is closed.
This allows us to simplify the resulting expressions using the Stokes divergence theorem.

The second variation of the position field can be expressed as
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€r=
∂2r

∂e2
je = 0 = v= vaaa + vn, ð58Þ

where va and v are the tangential and normal components of v. These are related to the first variation
through the constraints of areal and volume incompressibility. Otherwise, they are arbitrary. The sec-
ond variation of the energy E can be computed by taking the variation of the first variation in (20) such
that

€E =

Z
v

f� _ua(s,a +
∂W

∂ua + Na)� ua ∂
_W

∂ua � ua _Na + _uG + u _Ggda ð59Þ

subject to the areal incompressibility constraint,

_J

J
= ua

;a � 2uH = 0, ð60Þ

and the volumetric constraint,

_V =

Z
v

uda = 0: ð61Þ

The stability of such a surface at equilibrium requires that

€E . 0 ð62Þ

for the variations that satisfy (60), (61), along with the constraints €J = 0 and €V = 0. The constraints on
the second variation of the areal stretch ratio (€J ) and the volume enclosed by the membrane (€V ) yield the
relation between the second variation v and the first variation u. These relations are not presented here
as the second variation of the energy functional in its entirety can be written as a functional of the first
variation in position and its derivatives at equilibrium. To compute the second variation of the energy
functional in (59), we need to evaluate f _ua, _u, ∂ _W

∂ua , _Na, _Gg. We obtain each of these variations in the sub-
sequent sections.

3.1. Tangential displacement

The variation of the tangential components of u is given by

_ua = _u � aa + u � _aa = (v � aa) + (u � u,b)aab � (u � ag)aal _alg, ð63Þ

where the variations in the co-tangent vectors and the inverse metric are expressed as

_aa = aab _ab + _aabab and _aab =� aalabg _alg: ð64Þ

Using the relation

u � u,b =
1

2
(u � u),b = uhuh;b + uu,b ð65Þ

in (63), we obtain the desired variation of the contravariant components u

_ua = va + aab(uhuh;b + uu,b)� ugaal(ul;g + ug;l � 2ublg),

= va + uu,baab � ugua
;g + 2uugba

g :
ð66Þ
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3.2. Normal displacement

To compute the variation _u, we use the fact that n at each point is a unit vector and its variation would
lie in the tangent plane such that [30]

_n=� (n � u,a)aa: ð67Þ

This yields the variation

_u = _u � n+ u � _n,

= v� uau,a � uaugbga:
ð68Þ

3.3. Heterogeneity

We define the explicit derivative of the strain energy density (W ) associated with the heterogeneity of the
material surface as Ia(H ,K; ug) = ∂W

∂ua. We assume that similar to (W ), its explicit derivatives with respect
to (ua) are also a function of the curvature invariants and material heterogeneity, i.e., (H ,D,K; uh). This
furnishes

_Ia = (Ia)H
_H + (Ia)K

_K + (Ia)D
_D

=
∂WH

∂ua ½uhH,h +
(Du)

2
+ u(2H2 � K)�+ ∂WK

∂ua ½uhK,h + 2uHK + ~b
gb

u;gb�

+
∂WD

∂ua ½uhD,h � uhbgb(lglb);h + u;hblhlb � 1

2
Du + 2uHD�:

ð69Þ

We can re-arrange the above equation and separate out the tangential and the normal components to
obtain

_Ia = uh ∂(W,h)

∂ua � ∂2W

∂uauh

� �
+

(Du)

2

∂WH

∂ua �
∂WD

∂ua

� �
+ u;hb

∂WK

∂ua
~b

hb
+

∂WD

∂ua lblh

� �

+ 2uH
∂

∂ua WH H + WKK + WDDð Þ � u
∂WH

∂ua K � uh ∂WD

∂ua bgb(lglb);h:

ð70Þ

To compute the variation _Na and _G, we decompose the variation into tangential and normal parts
denoted by ( _Nat

, _Gt) and ( _Nan
, _Gn), respectively.

3.3.1. Tangential variations. The variations of the first and second fundamental forms for tangential varia-
tions u= uaaa can be obtained using (7)

_aab = ua;b + ub;a; _bab = ul
;bbla + ul

;ablb + ulbla;b: ð71Þ

The above equation can be used to obtain the variations in the mean, deviatoric, and Gaussian
curvatures

_H = uaH,a, _D = uhD,h � uhbab(lalb);h, _K = ua:K,a: ð72Þ

Using Palatini’s identity, we can compute the variation of the Christoffel symbols

_Gg
ab =

1

2
agh½( _ahb);a + ( _aha);b � ( _aab);h�

=
1

2
agh(uh;ab + uh;ba + ua;hb � ua;bh + ub;ha � ub;ah):

ð73Þ

The variations in the contravariant components of l and m are given by (using (13)),
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_la =� ua
;glg, _ma =� ua

;gmg: ð74Þ

Now, the tangential variation of Na ( _Nat
) as defined in (21)1 can be written as

_Nat
= _WDbbh(lblh);a + WD

_bbh(lblh);a + WDbbh
_

(lblh);a: ð75Þ

Here the dot above the overbar is used to represent the variation of all the fields beneath the overbar.
For computing the first term on the right-hand side of the above equation, we write the variation in WD

as

_WD = WDH
_H + WDD

_D + WDK
_K, ð76Þ

which, after using (72), reduces to

_WD = ug(WD), g � ug ∂WD

∂ug � ugWDDbfc(lflc);g: ð77Þ

The variation of the second term in right-hand side of (75) is computed with the help of the Manardi–
Codazzi equations (bab;h = bah;b) and (71)

WD
_bbh(lblh);a = WD½(ugbgh);b + ug

;hbgb�(lblh);a: ð78Þ

As the curvature tensor is symmetric, the variation of the last term in the right-hand side of (75) can be
written as

WDbbh
_

(lblh);a = 2WDbbh
_

lb
;alh = 2WDbbh(

_
lb

;a lh + lb
;a

_l
h

): ð79Þ

To derive
_

lb
;a , we use the fact that l lies in the tangent plane of the surface which enables us to write

_
lb

;a =
_

(l � ab);a =
_

l,a � ab : ð80Þ

Using (11) and (67) and the assumption that the variation of l is along the normal, we obtain

_
lb

;a = (l � ag)(n � u, g)(n,a � ab) + (l,a � u, g)abg + (l,a � ag) _abg

=� lgufbfgbb
a + lh

;auh;gabg + lhufb
b
fbha � lh

;aabf(uf;h + uh;f)

= lguf(bb
fbga � bfgbb

a)� lg
;aub

;g:

ð81Þ

We have used (64) and (71) to write the variation of components of the dual metric aab above. Now,
using the above relation and (74), Equation (79) can be arranged as

WDbbh
_

(lblh);a = 2WDbbh½lhlguf(bb
fbga � bfgbb

a)� ub
;g(lhlg);a�: ð82Þ

Hence, substituting variations from (77), (78), and (82) into (75) we obtain the variation _Nat
as

_Nat
= ug(Na);g � ugWDbbh(lblh);ag � ugbbh(lblh);a(

∂WD

∂ug + WDDbfc(lflc);g)

+ 2ufWDbbhlhlg(bb
fbga � bfgbb

a),
ð83Þ

and subsequently obtain
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ua _Nat
= uaug(Na);g � uaugWDbbh(lblh);ag

� uaugbbh(lblh);a(
∂WD

∂ug + WDDbfc(lflc);g):
ð84Þ

Before deriving the tangential variation of G in (21)2, we note some of the important relations arising
from the fact that surface is a 2D Riemannian manifold embedded in 3D space. Here, Riemann curva-
ture tensor quantifies the non-commutability of the covariant derivative of any surface vector da (see
[31]) such that

db
;ga � db

;ag = Rb
hagdh, ð85Þ

and the Riemann tensor is intrinsic to the surface to yield

Rabgh = bagbbh � bahbbg = K(aagabh � aahabg): ð86Þ

This enables us to obtain the relation

da
;ba � da

;ab = Kdb: ð87Þ

Now, we write the expansion of first term in G from (21)2 to be

_
(WDlalb);ba =

_
(WD);balalb +

_
2(WD),b(lalb);a +

_
(WD)(lalb);ba : ð88Þ

Variation of the first term in right-hand side of the above equation is

_
(WD);balalb = ( _WD);balalb � (WD), l _Gl

balalb + 2(WD);ba
_lalb: ð89Þ

Using (77), (73), (74), (85)–(87) and calculations detailed in Appendix A, we obtain this to be

_
(WD);balalb = ug½(WD);ba�;glalb � ½ug ∂WD

∂ug + ugWDDbfc(lflc);g�;balalb: ð90Þ

The second term on the right-hand side of (88) is

_
2(WD),b(lalb);a = 2( _W D),b(lalb);a + 2(WD),b

_(la);a lb

+ 2(WD),bla _
(lb);a + 2(WD),b(la);a

_l
b
+ 2(WD),b(lb);a

_l
a
:

ð91Þ

Using relations from (81) and (86), we obtain that

_(la);a = lguf(ba
fbga � bfgba

a)� lg
;aua

;g =� uglgK � lg
;aua

;g ð92Þ

and further using (77) (elaborated upon in Appendix A), we simplify the variation in (91) to be

_
2(WD),b(lalb);a = 2ug½(WD),b(lbla);a�;g � 2(WD),b(ug(lbla);g);a

�2(ug ∂WD

∂ug + ugWDDbfc(lflc);g),b(lalb);a:
ð93Þ

Variation of the last term on right-hand side in (88) is
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_
(WD)(lalb);ba = ( _W D)(lalb);ba + (WD)(

_
la

;balb + la
;blb

;a + la
;al

b
;b

+
_

lal
b
;ba ),

ð94Þ

where from (87) we obtain

_
la

;ba = _
la

;ab + _Klb + K _lb: ð95Þ

and to evaluate the variation _
la

;ab, we note that because la
;a is a scalar, we can write

_
la

;ab = ( _
la

;a);b: ð96Þ

Using (92) we obtain

_
la

;ab = ½�uglgK � (ugla
;g);a + ugla

;ga�;b, ð97Þ

which, after using (87), is arranged as

_
la

;ab = ug(la
;ab);g + u

g
;bla

;ag � (ugla
;g);ab: ð98Þ

Using the above relation, variation of la
;ba can be obtained as

_
la

;ba = ug(la
;ba);g � ugKlb;g + u

g
;bla

;ga � (ugla
;g);ab: ð99Þ

Similarly, we can evaluate the variations using (81) and (92)

_
la

;blb
;a = 2la

;b

_
lb

;a = ug(lb
;ala

;b);g � 2lb
;a(ugla

;g);b, ð100Þ

and

_
la

;al
b
;b = 2 _

la
;al

b
;b = ug(la

;al
b
;b);g � 2l

b
;b(ugla

;g);a: ð101Þ

Thus, using (98)–(101), we obtain

_
(lalb);ba = ug½(lalb);ba�;g � 2½(ugla

;g);alb�;b � 2ugla
;ablb

;g

� (ugla
;g);blb

;a:
ð102Þ

We note a useful relation arising from the fact that l is a unit vector

(lblb);g = 0⇒lb
;glb =� lblb;g = 0 ð103Þ

and combine the variations obtained (as detailed in Appendix A) in (77), (81), (92), (98)–(102) and sub-
stituted in (88) to obtain

_
(WD)(lalb);ba = ug½WD(lalb);ba�;g

� ½ug ∂WD

∂ug + ugWDDbfc(lflc);g�(lalb);ba:
ð104Þ

Combining the variations derived in (90), (93), (104), and substituting in (88) we obtain the tangential
variation in first term of G as
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_
(WDlbla);ba = ug½(WDlalb);ba�;g � ½ugWD(lalb);g�;ab

� f½ug ∂WD

∂ug + ugWDDbfc(lflc);g�lalbg;ba:
ð105Þ

To find the variation of DsWD, we follow the similar exercise as in [23] to derive the tangential varia-
tion for DsWH to write

_
DsWD = ( _WD);abaab � (WD), g _Gg

abaab + (WD);ab _aab: ð106Þ

On using the variations in (71)–(73), variation of WD in (77), and the properties of the Riemann curva-
ture tensor from (85)–(87), we simplify (106) to

_
DsWD = ug(DsWD), g � Ds(u

g ∂WD

∂ug )� Ds½ugWDDbab(lalb);g� ð107Þ

The variation of third term of G in (21) is

_2HDWD = 2 _HDWD + 2H _DWD + 2HD _WD ð108Þ

Using the (72) and (77) we obtain

_2HDWD = ug(2HDWD), g � 2ugHD ∂WD

∂ug � 2ugH(lalb);gbab(WD + DWDD): ð109Þ

Similar to variation of DsWD, we obtain that the variation of DsWH can be written as

_
DsWH = ug(DsWH ), g � Ds(u

g ∂WH

∂ug )� Ds½ugWHDbab(lalb);g�: ð110Þ

The tangential variation of the fourth term in G can be expressed as

_
(WK);ab(2Haab � bab) = _

2HDsWK � _
(WK);abbab, ð111Þ

where variation of the first term in the above equation, similar to (110) and using (77), is

_
2HDsWK = ug(2HDsWK), g � 2HDs(u

g ∂WK

∂ug )� 2HDs½ugWKDbab(lalb);g�: ð112Þ

The variation of the second term in (111) can be written as [23]

_
(WK);abbab = ug½(WK);abbab�;g � bab(ug ∂WK

∂ug );ab � bab½ugWKDbuf(lulf);g�;ab: ð113Þ

Thus, we can use the above two equations and substitute into (111) to obtain

_
(WK);ab(2Haab � bab) = ug½(WK);ab

~b
ab�, g

� ~b
ab

(ug ∂WK

∂ug )
;ab

�~b
ab½ugWKDbuf(lulf);g�;ab

:

ð114Þ

Similarly, the tangential variation of the remaining terms in G can be obtained using (72) such that

_
WH (2H2 � K) = ug½WH (2H2 � K)�, g � ug(

∂WH

∂ug )(2H2 � K)� ug½WHDbab(lalb);g�(2H2 � K), ð115Þ

_2H(KWK �W ) = ug½2H(KWK �W )�, g � 2ugH(K
∂WK

∂ug �
∂W

∂ug )� 2ugH ½KWKDbab(lalb);g �WDbab(lalb);g�,

ð116Þ
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and

_2sH = 2s _H = ug(2sH), g � 2ugs, gH : ð117Þ

Thus, tangential variation of G ( _Gt) can be written using (105), (107), (109), (110), (114), (115), (116),
and (117) as

_Gt = ugG;g + termsduetoheterogeneityandorthotropy: ð118Þ

For brevity we have combined all the terms in the tangential variation of G in Appendix B. We note
here that as the protein orientation and material heterogeneity are decoupled from the kinematical
description of membrane, they affect the tangential variation of the terms in the shape equation. In addi-
tion, because surface tension s and pressure p are considered to be the Lagrange multiplier enforcing
the first-order constraints on local area and volume enclosed at equilibrium, their variations have not
been considered.

3.4. Normal Variations

For normal variations u= un. Using (7), (13), we compute the variations in the metric tensor, the curva-
ture tensor and the protein alignment as

_aab =� 2ubab, _bab = u;ab � ubg
abgb,

_l
a
= ulgba

g , _ma = umgba
g :

ð119Þ

These can be used to derive the variations in the curvature invariants (H ,K,D) as

_H =
1

2
(Dsu) + u(2H2 � K), _K = u;ab

~b
ab

+ 2uHK,

_D =
1

2
(lalb � mamb)(u;ab + ubagb

g
b) = u;ab(lalb)� 1

2
(Dsu) + 2uHD:

ð120Þ

Variations in the components of the Christoffel symbols can be evaluated from the variations of the
metric in (119) and substituting them in (73)1

_Gg
ab =� agu½(ubau);b + (ubbu);a � (ubab);u�: ð121Þ

To obtain
_

lb
;a, we note

lb
;a = lb

,a + lgGb
ga ð122Þ

and using the commutativity of the variational and the spatial derivative, we obtain

_
lb

;a = ( _lb);a + lg _Gb
ga: ð123Þ

Substituting the variation ( _lb) from (119) and that of the Christoffel symbol from (121), we obtain the
above variation as

_
lb

;a = ( _lb);a � (ubb
g);alg � u, glgbb

a + u, ulgbagabu: ð124Þ

This shows how the gradient of a protein’s orientation changes with a normal variation to the surface.
The first component specifies change with respect to the metric whereas the rest of the term are because
of change in metric connection. The above equation can hence be used to obtain the variation

_
la

;a = ( _la);a + lg _Ga
ga = ( _la);a � lg(2uH), g: ð125Þ
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Similar to (124), the above equation shows how the divergence of the protein’s orientation changes due
to a normal variation to the surface.

Thus, normal variation of Na as mentioned in (21), i.e., ( _Na)n can be written as in (75) with superposed
dots now signifying the variational derivative for normal variations to the surface. Using (119) and (124)
and the fact that curvature tensor is symmetric, we obtain

( _Na)n = ( _W D)bbh(lblh);a + u;bhWD(lblh);a

+ 2WDbbh(� u, gbb
alglh + u, ubagabulglh) + uWDbbhbh

g(lglb);a:
ð126Þ

Variation _WD in the above equation can be expanded using (76) and (120) to be

_W D = WDD(u;hglhlg � 1
2

Dsu + 2uHD) + WDH ½12 Dsu + u(2H2 � K)�+ WDK(u;hg
~b

hg
+ 2uHK): ð127Þ

We represent the normal variation of G as _Gn. To obtain this, we write the variation of the first term
as

_
(WDlalb);ba =

_
(WD);ablalb + 2

_
(WD),b(lalb);a +

_
WD(lalb);ba: ð128Þ

In the above equation, variation of the first term on right-hand side can be written as that in (89) and
can be evaluated using (119) and (121) to be

_
(WD);balalb = ( _WD);balalb + 2(WD);ba

_lalb + (WD), glalb½(ubg
a);b + u,bbg

a � u, ubabagu�: ð129Þ

On changing of dummy indices in the last term, we can write the above equation as

_
(WD);balalb = ( _W D);balalb + 2(WD);ba

_l
a
lb + (WD),blalg½(ubb

g);a + u, gbb
a � u, ubagabu�: ð130Þ

Variation of the second term on the right-hand side of (128) is obtained using (91), (119), (124), and
(125) such that

2
_

(WD),b(lalb);a = 2( _W D),b(lalb);a + 2(WD),b(
_

lalb);a

� 2(WD),b½lblg(2uH), g + lalg(ubb
g);a + u, glalgbb

a � u, ulalgbagabu�:
ð131Þ

Variation of the third term on the right-hand side of (128) can be expanded as

_
(WD)(lalb);ba = ( _WD)(lalb);ba + (WD)(

_
la

;balb + la
;blb

;a + la
;al

b
;b +

_
lal

b
;ba): ð132Þ

To evaluate it, we use Eq. (125) and the fact that la
;a is scalar and obtain

_
l

b
;ba = (

_
l

b
;b);a = ( _lb);ba � ½lg(2uH), g�;a: ð133Þ

Using (87) and the relation above, we then obtain

_
la

;ba = _
la

;ab + _Klb = (ulgba
g);ab � ½lg(2uH), g�;b + _Klb: ð134Þ

Considering da = ulgba
g , the above equation can be simplified after adding and subtracting the vector

field db = ulgbbgK

_
la

;ba = (ulgba
g);ba � ulgbbgK � ½lg(2uH), g�;b + _Klb

= ( _l
a

);ba � ulgbbgK � ½lg(2uH), g�;b + _Klb:
ð135Þ
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Substituting the variations obtained from (119), (120), (124), (125), (133), and (135) into (132), we
obtain

_
WD(lalb);ba = _W D(lalb);ba + WD(

_
lalb);ba � 2uWDlblgbbgK

+ (u;ab
~b

ab
+ 2uHK)WD � 2WDla

;b½(ubb
g);alg + u, glgbb

a � u, ulgbagabu� � 2WD½lglb(2uH), g�;b:
ð136Þ

Combining (130), (131), and (136) and substituting into (128), then yields

_
(WDlalb);ba = (

_
WDlbla);ba + uWDK(2uH � bbglblg) + u;ab

~b
ab

WD

� ½(WD),blalg + 2WDla
;blg�½(ubb

g);a + u, gbb
a � u, ubagabu� � 2½WDlblg(2uH), g�;b:

ð137Þ

The above expression can be further simplified using the symmetry of a and g to

_
(WDlalb);ba = (

_
WDlbla);ba + uWDK(2uH � bbglblg) + u;ab

~b
ab

WD

� (WDlalg),b½(ubb
g);a + u, gbb

a � u, ubagabu� � 2½WDlblg(2uH), g�;b:
ð138Þ

Here the normal variations of WD and la can be obtained from (120) and (127).
Normal variation of the surface Laplacian of WD is given by

_
DsWD = ( _WD);abaab � (WD), g _Gg

abaab + (WD);ab _aab: ð139Þ

Variation of WD is obtained in (127), whereas from (121) we have

�(WD), g _Gg
abaab = (WD), gaabagh½(2ubha);b � (ubab);h�

= (WD), g½(2ubbg);b � (2uH);hagh�:
ð140Þ

Using (64) and (119) we obtain

(WD);ab _aab = 2u(WD);abbab: ð141Þ

Thus, the variation in (139) can be obtained from (127), (140), and (141) as

_
DsWD = ( _W D);abaab + (WD), g½(2ubbg);b � (2uH);hagh�+ 2u(WD);abbab: ð142Þ

Next, using (120) and (127), we can compute the variation

_2HDWD = 2 _HDWD + 2H _DWD + 2HD _WD: ð143Þ

Similar to the normal variation of Ds(WD) as obtained in (139)–(141), the normal variation of Ds(WH )
can be written as

_
DsWH = ( _WH );abaab + (WH ), g½(2ubbg);b � (2uH);hagh�+ 2u(WH );abbab: ð144Þ

Next, we compute the normal variation of (WK);ab
~bab, which is given by

_
(WK);ab(2Haab � bab) = ( _WK);ab

~bab � (WK), l _Gl
ab

~bab + (WK);ab
_~b

ab
, ð145Þ

where, with the help of (120), we have

_WK = WKH ½
1

2
Dsu + u(2H2 � K)�+ WKK(u;hg

~bhg + 2uHK) + WKD(u;hglhlg � 1

2
Dsu + 2uHD): ð146Þ
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Using (121) and the procedure highlighted in Appendix C, we then obtain

(WK), l _Gl
ab

~bab =� u(WK), lK,halh ð147Þ

and

_~b
ab

= 4uH~bab + ealebg(u;lg � ub
h
lbhg): ð148Þ

Using these relations, we finally compute

_
(WK);ba(2Haba � bba) = ( _WK);ba

~bba � u(WK), lK,halh + 4uH(WK);ba
~bba + ealebg(u;lg � ub

h
lbhg)(WK);ba:

ð149Þ

We use (120) to compute the normal variation of the remaining terms of G in (21)2 and group them
using (138), (142), (143), (144), and (149) in Appendix D.

3.5. Total variations

Having derived all the ingredients for computing the second variation of the energy functional, at equili-
brium, we can write

€E =

Z
v

�ua(_Ia + ( _Na)t + ( _Na)n) + u( _Gt + _Gn) ð150Þ

subject to the constraints area and volume incompressibility. Further, we also use the fact that at equili-
brium, Equations (22), (60) hold whereas G and G,a vanish at each point of the surface. To simplify the
following equations we have used the fact that the surface is closed, and so the divergence terms can be
equated to zero by invoking the divergence theorem. This allows us to write for any scalar field fZ

v

uDsf da =

Z
v

(Dsu)f da: ð151Þ

The integrand in (150) can be expanded and written in terms of the tangential variations (ua) and the
normal variations (u) in the following way.

� The terms with coefficient uaug, computed with the help of (70) and (84), are given by

s;ag +
∂2W

∂ua∂ug + 2(
∂WD

∂ua )bbh(lblh);g + WDbbh(lblh);ag

+ WDDbbhbfc(lblh);g(lflc);a:

ð152Þ

� The terms with coefficients uau obtained using (70), (126), and (217) and the relation G, g = 0, are
given by

� 4H
∂

∂ua (WH H + WKK + WDD) + 2
∂WH

∂ua K + 2H(
∂W

∂ua + s,a)

� (4H(WDHH + WDDD + WDKK)� 2KWHD)bbh(lblh);a �WDbbhbh
g(lglb);a:

ð153Þ

� The terms with coefficient uaDsu, obtained using (70), (126), and (217), include

� f∂WH

∂ua �
∂WD

∂ua g � (WDH �WDD)bbh(lblh);a: ð154Þ

� The terms with coefficient uau;bh obtained using (70), (126), and (217), include
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� 2(
∂WK

∂ua
~bhb +

∂WD

∂ua lblh)� 2(WDK
~bhb + WDDlblh)bfc(lflc);a � 2WD(lblh);a: ð155Þ

� Terms with coefficient uau,g obtained using (126), are given by

= 2WDfbbhbb
alglh � babbg

hlblhg: ð156Þ

� The terms with coefficient u2, obtained using (231), are given by

WDK(2H � 2K � bbglblg)� (WDlalg);bbb
g;a � 2(WDlalg)(2H);ga(WH �WD);abbab � (WK), lK,halh

+ 4H(WK);ba
~b

ba � ealebg(WK);abb
h
lbhg + 4H2(D2WDD

+ H2WHH + K2WKK + 2HDWHD + 2DKWDK + 2HKWHK + DWD + HWH + KWK �W � s)

� K½WHH (4H2 � K) + 4HDWHD + 4HKWHK + 4HWH + 2KWK + 2W + 2s�:
ð157Þ

� The terms with coefficient uu,a, obtained using (231), include

� 2(WDlgla);bbb
g + (WDlhlg);bbhgaba � 4(WDlalg);gH + (WH �WD), g(Haag + ~bag)� 8WDlalgH, g:

ð158Þ

� The terms with coefficient uu;ab, obtained using (231), include

2lalb½2HDWDD + WHD(2H2 � K) + 2HKWKD�

+ ~b
ab½4HDWKD + 4HKWKK + 2(2H2 � K)WHK + WD �WH �

+ ealebg(WK);lg � 4WDHlbla + 2WDlalgbb
g :

ð159Þ

� The terms with coefficient u(Dsu), obtained using (231), are given by

HWH + DWD + 2HD(WHD �WDD) + (WHH �WHD)(2H2 � K) + 2HK(WHK �WDK) + KWK �W � s:

ð160Þ

� The terms with coefficient u;abu;gh, obtained using (231), include

WDDlalblglh + 2WDK
~bghlalb + WKK

~bab~bgh: ð161Þ

� The terms with coefficient u;ab(Dsu), obtained using (231), include

lalb(WDH �WDD) + ~bab½WHK �WDK +
1

2
(WHD �WDD)�: ð162Þ

� The terms with coefficient (Dsu)2, obtained using (231), are given by

1

4
(WHH + WDD � 2WHD): ð163Þ

The second variation of the energy functional is required to be positive, €E . 0, for a given configuration
in equilibrium to be stable with respect to the admissible variations. The variations are permissible if they
satisfy the kinematic constraints on areal and volume incompressibility as mentioned in (60) and (61).
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4. Conclusion

The stability analysis presented here extends the theory of conventionally studied isotropic biomem-
branes to those which possess orthotropic symmetry in the presence of BAR-like proteins. The study
opens new avenues to investigate stability and shape transformations of membranes interacting with
BAR-like proteins. One specific example where the developed framework can be used is for studying
spontaneous tubulation of lipid membranes in the presence of BAR proteins [32]. Although the derived
theory currently does not account for diffusion of BAR proteins, this assumption shall be relaxed in
future theoretical studies by incorporating a constitutive law for the evolution of protein orientation on
the surface.
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Appendix A

Here, we derive the tangential variation of the shape equation

G = (WDlalb);ba �
1

2
Ds(WD) + 2HDWD +

1

2
DsWH

+ (WK);ba
~bba + WH (2H2 � K) + 2H(KWK �W )� 2Hs � p:

½ð164Þ�

Variation of the first term can be written as

_
(WDlalb);ba =

_
(WD);balalb +

_
2(WD),b(lalb);a +

_
(WD)(lalb);ba: ½ð165Þ�

Using the relation that for any scalar field f , defined on the surface,

f;ab = f,ab � f, lGl
ab, ½ð166Þ�

we obtain

_
(WD);balalb = ( _WD),balalb � ( _WD), lGl

ba � (WD), l _Gl
balalb + 2(WD);ba

_lalb: ½ð167Þ�

On combining the first two terms above to form a second-order covariant derive, we obtain

_
(WD);balalb = ( _WD);balalb � (WD), l _Gl

ba + 2(WD);ba
_lalb: ½ð168Þ�

A.1. First term

Using (77), the variation of the first term in the above equation can be written as

( _WD);balalb = (ug(WD), g � ug ∂WD

∂ug � ugWDDbfc(lflc);g);balalb: ½ð169Þ�

We expand the first term in the right-hand side above to obtain
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½ug(WD), g�;balalb = 2u
g
;b(WD);galalb + u

g
;ba(WD), glalb + ug½(WD),b�;galalb, ½ð170Þ�

and further rewrite it as

= 2u
g
;b(WD);galalb + fug

;ba(WD), g + ug½(WD),b�;ga � ug½(WD),b�;ag + ug½(WD),b�;agglalb: ½ð171Þ�

As (WD),b is a surface vector, we obtain

½ug(WD), g�;balalb = 2u
g
;b(WD);galalb + u

g
;ba(WD), glalb + ug(WD),fafhRbhaglalb + ug½(WD),b�;aglalb:

½ð172Þ�

Using (87), which relates the Riemann tensor to the metric components and the intrinsic curvature, we
obtain

Rbhagafhlalb(WD),f = K(abaahg � abgaha)afhlalb(WD),f

= K½lblb(WD), g � lalg(WD),a�:
½ð173Þ�

Hence,

½ug(WD), g�;balalb = 2u
g
;b(WD);galalb + u

g
;ba(WD), glalb + ug½(WD),b�;aglalb + ugK½(WD), g � lalg(WD),a�:

½ð174Þ�

We expand the second term in (168) using (73) to write

(WD), g _Gg
balalb =

1

2
(WD), llalb½agh(uh;ab + uh;ba + ua;hb � ua;bh + ub;ha � ub;ah)�

= (WD), glalb½ug
;ab + agh(ub;ha � ub;ah)�

= (WD), glalb(ug
;ab + aghRbfahuf):

½ð175Þ�

Again, using (87), we obtain

ufaghRbfah = K(ugaba � d
g
bua), ½ð176Þ�

which can be used to obtain the variation in (175) and arranged as

(WD), g _Gg
balalb = (WD), g(ug

;balalb + Kug � Kualalg)

= u
g
;ba(WD), glalb + ugK½(WD), g � lalg(WD),a�:

½ð177Þ�

The variation listed as the third term in (168) can be obtained by substituting the variation of the contra-
variant component of the protein alignment as mentioned in (119) to yield

2(WD);ba
_lalb =� 2ua

;g(WD);balglb =� 2u
g
;b(WD);galalb: ½ð178Þ�

Thus, from (167) and by substituting variations obtained in (169), (177), and (178) we obtain

_
(WD);balalb = ug½(WD);ba�;glalb � ½ug ∂WD

∂ug + ugWDDbfc(lflc);g�;balalb: ½ð179Þ�

A.2. Second term

Variation of the second term in (165) is given by
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_
2(WD),b(lalb);a = 2( _W D),b(lalb);a + 2(WD),b(lb);a

_l
a

+ 2(WD),b(la);a
_l

b
+ 2(WD),bla _

(lb);a + 2(WD),b
_(la);alb:

½ð180Þ�

Using (81) and the relations from (86), we obtain that

_(la);a = lguf(ba
fbga � bfgba

a)� lg
;aua

;g =� uglgK � lg
;aua

;g: ½ð181Þ�

Thus,

_
2(WD),b(lalb);a = 2½ug(WD), g � ug ∂WD

∂ug � ugWDDbfc(lflc);g�;b(lalb);a

+ 2(WD),bf� ua
;glglb

;a � ub
;glgla

;a|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} + la½uflg(bb
fbga � bfgbb

a)� ub
;glg

;a|fflffl{zfflffl}�
+ lb½uflg(ba

fbga � bfgba
a)� ua

;glg
;a|fflffl{zfflffl}�g:

½ð182Þ�

Expanding the first term and combining the underbraced terms, we obtain

_
2(WD),b(lalb);a = ½2u

g
;b(WD), g + 2ug(WD);bg�(lalb);a

� 2½ug ∂WD

∂ug � ugWDDbfc(lflc);g�;b(lalb);a

+ 2(WD),b½� ua
;g(lglb);a|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}�ub

;g(lgla);a

+ uflalg(bb
fbga � bfgbb

a) + uflblg(ba
fbga � bfgba

a|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} )�:

½ð183Þ�

Here, we can write the above underbraced term as

2(WD),bua
;g(lglb);a = 2(WD),bug

;a(lalb);g

= 2(WD),b½ug(lalb);g�;a � 2ug(WD),b(lalb);ga:
½ð184Þ�

On using (85) and (87), we can write

(lalb);ga � (lalb);ag = la(lb
;ga � lb

;ag) + lb(la
;ga � la

;ag)

= lalhRb
hag + Klblg,

½ð185Þ�

Combining the above equations, we obtain

2(WD),bua
;g(lglb);a = 2(WD),b(ug(lalb);g);a � 2ug(WD),b(lalb);ag � 2ug(WD),b½lalhRb

hag + Klblg�:
½ð186Þ�

Again using (85) and (87) for the remaining underbraced terms in (182), we obtain

2uf(WD),b½lalg(bb
fbga � bfgbb

a) + lblg(ba
fbga � bfgba

a)�= 2uf(WD),b½�R
b
gaflalg � Klblf�: ½ð187Þ�

We can see that the last two terms of (186) cancel with the terms of (187) when substituted into (183) to
yield
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_
2(WD),b(lalb);a = 2ug½(WD),b(lbla);a�;g � 2(WD),b½ug(lbla);g�;a

� 2½ug ∂WD

∂ug + ugWDDbfc(lflc);g�,b(lalb);a:
½ð188Þ�

A.3. Third Term

Variation of the last term in right-hand side of (165) is given by

_
(WD)(lalb);ba = ( _W D)(lalb);ba + WD

_
(lalb);ba

= ( _W D)(lalb);ba + (WD)(
_

la
;balb + la

;blb
;a + la

;al
b
;b + lal

b
;ba):

½ð189Þ�

From (87), we obtain

_
la

;ba = _
la

;ab + _Klb + K _lb: ½ð190Þ�

As la
;a is a scalar, we can write

_
la

;ab = ( _
la

;a);b: ½ð191Þ�

Hence, using (92) we compute

_
la

;ab = ½�uglgK � (ugla
;g);a + ugla

;ga�;b,
= ½�(ugla

;g);a + ugla
;ag�;b:

½ð192Þ�

As for any scalar (la
;a);gb = (la

;a);bg, we obtain

_
la

;ab = ug(la
;ab);g + u

g
;bla

;ag � (ugla
;g);ab: ½ð193Þ�

Using the above relation, the variation of la
;ba can be obtained using (190) as

_
la

;ba = ug(la
;ab)

;g
+ u

g
;bla

;ag|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}�(ugla
;g);ab + ugK, glb + u

g
;bKlg|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl} : ½ð194Þ�

Combining the underbraced terms in the above equation, we obtain

_
la

;ba = ug(la
;ba);g � ugKlb;g + u

g
;bla

;ga � (ugla
;g);ab: ½ð195Þ�

Using the above equation along with (74) yields

_
la

;balb = ug(la
;ba);glb � ub

;glgla
;ba � ugKlb;glb + u

g
;bla

;galb � (ugla
;g);ablb: ½ð196Þ�

We note here that because l is a unit vector,

(lblb);g = 0,

) lb
;glb =� lblb;g:

½ð197Þ�

By raising and lowering of indices, we obtain

lb
;glb = lblb;g, ½ð198Þ�

which yields the relation
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lb
;glb = lblb;g = 0, ½ð199Þ�

and, hence,

la
;balb

;g = la
;ablb

;g + Klblb
;g

= la
;ablb

;g:
½ð200Þ�

Substituting this into (196), we obtain that

_
la

;balb = ug(la
;balb);g � ugla

;balb
;g � (ugla

;g);ablb: ½ð201Þ�

Similarly, using (193) and (74), we compute

_
l

b
;bala =

_
l

b
;bala + l

b
;ba

_l
a

= ug(lb
;ba);gla + ug

;al
b
;bgla|fflfflfflfflffl{zfflfflfflfflffl}�(uglb

;g);bala � ua
;gl

b
;balg|fflfflfflfflffl{zfflfflfflfflffl} , ½ð202Þ�

which can be rearranged after canceling out the underbraced terms above to obtain

_
l

b
;bala = ug(lb

;bala);g � ugl
b
;bala

;g � (uglb
;g);bala: ½ð203Þ�

Next, using (81), (85), and (86), we can evaluate the variation

_
la

;blb
;a = 2la

;b

_
lb

;a = 2la
;b(lgufR

b
gfa � lg

;aub
;g)

= 2ufla
;blgR

b
gfa � 2lb

;a(ugla
;g);b + 2ugla

;gblb
;a:

½ð204Þ�

We can rewrite the dummy indices in the first term above and use the chain rule of differentiation for
the last term using (87) to obtain

_
la

;blb
;a = 2uglb

;alhRa
hgb � 2lb

;a(ugla
;g)

;b
+ 2ugla

;bglb
;a + 2uglb

;alhRa
hbg: ½ð205Þ�

As Ra
hgb =� Ra

hbg, we obtain
_

la
;blb

;a =� 2lb
;a(ugla

;g);b + ug(lb
;ala

;b);g: ½ð206Þ�

Using (181) and (87), we write the following variation as

_
la

;al
b
;b = 2

_
la

;al
b
;b = 2l

b
;b(� uglgK � lg

;aua
;g)

= �2ugl
b
;blgK|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}�2l

b
;b(ugla

;g);a + 2ugla
;agl

b
;b + 2uglgl

b
;bK|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} , ½ð207Þ�

which, after canceling the underbraced terms, can be written as
_

la
;al

b
;b =� 2l

b
;b(ugla

;g);a + ug(la
;al

b
;b);g: ½ð208Þ�

Thus, summing the variations in (201), (203), (206), and (208), we obtain

_
(lalb);ba = ug½(lalb);ba�;g � ugla

;gl
b
;ab � (ugla

;g);ablb � lb
;a(ugla

;g);b

� l
b
;b(ugla

;g);a � uglb
;gla

;ab � (uglb
;g)

;ba
la

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}�la
;b(uglb

;g);a � la
;a(uglb

;g);b: ½ð209Þ�
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For the underbraced term above, we use (87) and (199) to compute

(uglb
;g);bala = (uglb

;g);abla � ugla;glaK = (uglb
;g);abla: ½ð210Þ�

Combining the following terms in (209), we obtain

� ugla
;gl

b
;ab � (ugla

;g);ablb � (ugla
;g);blb

;a � (ugla
;g);al

b
;b =� (ugla

;glb);ab, ½ð211Þ�

and, similarly, combining the remaining terms after using (210), we obtain

� uglb
;gla

;ab � (uglb
;g);bala � la

;b(uglb
;g);a � la

;a(uglb
;g);b =� (uglb

;gla);ab: ½ð212Þ�

Substituting the above two equations into (209), we obtain

_
(lalb);ba = ug½(lalb);ba�;g � ½ug(lalb);g�;ab: ½ð213Þ�

Using the above equation along with (77) and substituting into (189), we obtain

_
(WD)(lalb);ba = ug½WD(lalb);ba�;g � ½ug ∂WD

∂ug + ugWDDbfc(lflc);g�(lalb);ba: ½ð214Þ�

Using the variations obtained in (168), (179), (188), and (214), and substituting them in (165), we
obtain the tangential variation of the first term of G as

_
(WDlbla);ba = ug½(WDlalb);ba�;g � ½(ug ∂WD

∂ug + ugWDDbfc(lflc);g)lalb�;ba � ug(WD);ba(lalb);g

� 2(WD),b½ug(lbla);g�;a � (WD)½ug(lalb);g�;ab:
½ð215Þ�

We simplify it further by combining the last three terms in the above equation and rewrite it as

_
(WDlbla);ba = ug½(WDlalb);ba�;g � ½ugWD(lalb);g�;ab

� ½(ug ∂WD

∂ug + ugWDDbfc(lflc);g)lalb�;ba:
½ð216Þ�

Appendix B

In this section, we combine all the derived variations arising from the tangential variation of G.
Combining (105), (107), (109), (110), (114), (115), (116), and (117), we obtain

_Gt = ugG;g � ½ug ∂WD

∂ug lalb�;ba +
1

2
Ds(u

g ∂WD

∂ug )� 2ugHD
∂WD

∂ug

� 1

2
Ds(u

g ∂WH

∂ug )� ~b
ab

(ug ∂WK

∂ug );ab � ug(2H2 � K)
∂WH

∂ug

� 2ugH(K
∂WK

∂ug �
∂W

∂ug ) + 2ugs, gH � ½ugWD(lalb);g�;ba

� ½ugWDDbfc(lflc);glalb�;ab +
1

2
Ds½ugWDD(lalb);gbab�

� 1

2
Ds½ugWHDbab(lalb);g� � ~b

ab½ugWKDbuf(lulf);g�;ab

+ ugWHDbab(lalb);gK � 2ugH(lalb);gbab(DWDD + KWKD + HWHD):

½ð217Þ�

As can be seen, the tangential variation of scalar G is not convected with the tangential variation to
the surface unlike some other fields such as the mean and the Gaussian curvatures. This is because of
two reasons.
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� The heterogeneity is decoupled from the changes in the position of the surface. This also led to the
non-convected terms in the tangential variations for heterogeneous surface as shown in [23].

� The orientation of the protein l is also decoupled from the surface map for the tangential varia-
tions to the surface.

Hence, on suppressing the dependence of W on l and removing heterogeneity, we obtain the classical
variation _Gt = ugG, g (see [19]).

Appendix C

To derive the normal variation (WK), l
_Gl

ab
~bab in (147), we use the normal variation of the Christoffel

symbols in (121) and compute

_Gl
ab

~bab =� alu½(ubau);b + (ubbu);a � (ubab);u�~bab: ½ð218Þ�

As ~bab are the contravariant adjugate of curvature tensor and is divergence free, we obtain

~babbbu = da
u K, ½ð219Þ�

and

~bab
;b = 0: ½ð220Þ�

Using these relations and substituting into (218), we obtain

_Gl
ab

~b
ab

=� alu½(uK), u + (uK), u � 2u, uK � uK, u�,
=� uK, ualu:

½ð221Þ�

Using the above relations, we then obtain

(WK), l
_Gl

ab
~bab =� u(WK), lK, ualu: ½ð222Þ�

In addition, from the definition of ~bab, we have

~bab = ealebgblg, ½ð223Þ�

where eal = eal=
ffiffiffi
a
p

with eal being the surface permutation tensor (e12 =� e21 = 1, e11 = e22 = 0). The
variation of this term yields

_~b
ab

=� ealebg _a

a2
blg + ealebg _blg: ½ð224Þ�

Using the variation in areal stretch ratio (J ) owing to the normal perturbations

_J

J
=

_a

2a
=� 2uH : ½ð225Þ�

and the variation of the components of the curvature tensor from (119), we obtain

_~b
ab

= 4uH~bab + ealebg(u;lg � ub
h
lbhg): ½ð226Þ�

Appendix D

To obtain the normal variation

_2HDWD = 2( _HDWD + H _DWD + HD _WD), ½ð227Þ�
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we use (120), (127), and rearrange the terms to obtain

_2HDWD = (Dsu)½(D� H)WD + (HD)(WDH �WDD)�+ u;ab½(2HWD + 2HDWDD)lalb + 2HDWDK
~b

ab�
+ u½2(2H2 � K)(DWD + HDWDH ) + 4H2DWD + 4H2D2WDD + 4H2DKWDK �:

½ð228Þ�

Similarly, for the rest of the terms, we obtain

_
WH (2H2 � K) + 2H(KWK �W )

= (Dsu)½1
2

WHH (2H2 � K) + HWH + HKWHK + (KWK �W )� 1

2
WHD(2H2 � K)� H(KWKD �WD)�

+ u;abf~b
ab½WHK(2H2 � K)�WH + 2HKWKK �+ lalb½WHD(2H2 � K) + 2H(KWKD �WD)�g

+ ufWHH (2H2 � K)2 + WKK(2HK)2 + 4HK(2H2 � K)WHK + 4HWH (H2 � K) + 2(2H2 � K)(KWK �W )

+ 2HD½WHD(2H2 � K) + 2H(KWKD �WD)�g,
½ð229Þ�

and

2s _H = s½Dsu + 2u(2H2 � K)�: ½ð230Þ�

The normal variation of the terms in the shape equation G (21)2 can therefore be obtained by combin-
ing the individual variations from (138), (142), (143), (144), (149), (228), (229), and (230) as

_Gn = (
_

WDlbla);ba + uWDK(2H � bbglblg) + u;ab
~b

ab
WD

� (WDlalg),b½(ubb
g);a + u, gbb

a � u, ubagabu� � 2½WDlblg(2uH), g�;b

+
1

2
(Ds

_W H � Ds
_W D) + (WH �WD), g½(ubbg);b � (uH);hagh�

+ u(WH �WD);abbab + ( _W K);ab
~b

ab � u(WK), lK,halh

+ 4uH(WK);ba
~b

ba
+ ealebg(u;lg � ub

h
lbhg)(WK);ba

+ (Dsu)½DWD + HD(WDH �WDD) +
1

2
(WHH �WHD)(2H2 � K)

+ HWH + HK(WHK �WKD) + (KWK �W )� s�
+ (u;ablalb)½2HDWDD + WHD(2H2 � K) + 2HKWKD�

+ u;ab
~b

ab½2HDWKD + (2H2 � K)WHK �WH + 2HKWKK �
+ u½�2KDWD + 4(2H2 � K)HDWHD + 4H2DWD + 4H2D2WDD

+ 4H2DKWDK + WHH (2H2 � K)2 + WKK(2HK)2

+ 4HK(2H2 � K)WHK + 4H(H2 � K)WH + 2(2H2 � K)(KWK �W )

+ 4H2DKWKD � 2s(2H2 � K)�:

½ð231Þ�
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